Abstract
The growth of Zn dendrites and self-corrosion reaction during electrochemical cycling is a long-standing issue impeding the practical application of zinc-ion batteries. Although various surface engineering strategies have shown great promise in suppressing zinc dendrites, the protective layers unavoidably hinder Zn2+ diffusion, resulting in increased internal impedance/polarization. Therefore, constructing smart interface protective layers with fast Zn2+ transfer kinetics is highly desirable but remains a key challenge. Here, an Mg-Al layered double hydroxide (LDH)-based artificial solid electrolyte interface (SEI) with Zn-ion diffusion channels is proposed. The well-aligned interlayer channels in the Mg-Al LDH skeleton is proved to efficiently engineer the distribution of Zn2+ ions and facilitate Zn2+ diffusion between the electrode/electrolyte interface, thus giving rise to stable Zn deposition. Moreover, the mechanically robust Mg-Al LDH artificial SEI acts as an interfacial layer to constrain H2O-induced corrosion and hydrogen evolution reaction. Consequently, the Mg-Al LDH artificial SEI improves the Coulombic efficiency to 99.2% for more than 2000 cycles, and an ultralong lifespan of 1400 h has been achieved at 0.5 mA cm−2. Notably, the zinc-ion capacitors by pairing the Zn@LDH anode and high-loading active carbon cathode deliver outstanding cycling stability with a high capacity retention of 93.7% up to 10000 cycles at the high areal current density of 37.5 mA cm−2, portending the feasibility of practical applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.