Abstract

Cationic solid lipid nanoparticles (SLNs) have recently been suggested for non-viral gene delivery as a promising alternative to the liposomes. The aim of this study was to investigate the possibility to obtain re-dispersible cationic SLNs after a freeze-drying process in the absence of lyo- and/or cryoprotectors. The physical-chemical characteristics of cationic SLNs and their ability to bind gene material were investigated before and after the freeze-drying. To perform this study three samples of cationic SLNs, based on stearic acid, Compritol or cetylpalmitate, were prepared and characterized by PCS (photon correlation spectroscopy) and AFM (atomic force microscopy). The results indicated that solely the re-dispersed sample of stearic acid (SLN-SA) became very similar in terms of size and morphology to the fresh prepared sample, although it displayed a sensible reduction of the zeta potential (from 39.2 to 23.3 mV). By both the DSC (differential scanning calorimetry) and the ESCA (electron spectroscopy for chemical analysis) determinations, the reduction of the zeta potential was ascribed to the loss of the cationic lipids from the particle surface due to the rearrangement of the stearic acid lattice after the freeze-drying. Finally, the gel electrophoresis analysis demonstrated that SLN-SA re-suspended in PBS are unable to complex the DNA, while the SLN-SA re-dispersed in water displayed the same ability to bind DNA as the fresh prepared sample. We can conclude that cationic SLNs, based on stearic acid, retain the ability to complex DNA even after the freeze-drying in the absence of lyo- or cryoprotectors; thus, the powder form of this sample represents an attractive candidate to be investigated as in vivo DNA vector formulation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.