Abstract

Existing methods for flower classification are usually focused on segmentation of the foreground, followed by extraction of features. After extracting the features from the foreground, global pooling is performed for final classification. Although this pipeline can be applied to many recognition tasks, however, these approaches have not explored structural cues of the flowers due to the large variation in their appearances. In this paper, we argue that structural cues are essential for flower recognition. We present a novel approach that explores structural cues to extract features. The proposed method encodes the structure of flowers into the final feature vectors for classification by operating on salient regions, which is robust to appearance variations. In our framework, we first segment the flower accurately by refining the existing segmentation method, and then we generate local features using our approach. We combine our local feature with global-pooled features for classification. Evaluations on the Oxford Flower dataset shows that by introducing the structural cues and locally pooling of some off-the-shelf features, our method outperforms the state-of-the-arts which employ specific designed features and metric learning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.