Abstract

Metabolic engineering in Lactic acid bacteria (LAB) has focused on changing of pyruvate metabolism to increase production of desired flavor compounds. A constructed mutant strain should contain no foreign DNA and antibiotic resistance genes. Therefore, food grade lactate dehydrogenase (ldh d) and diacetyl reductase (dar d) mutant strains were created using two plasmid system in this study. Metabolic end products (pyruvate, lactate, formate and acetoin) of these strains in glucose medium and in cheese were determined using HPLC. Created mutant and wild type strains were used as a starter culture in cheese. Compared to the wild type strain, different levels of metabolites were observed in cheese during three weeks of ripening. The ldh d strains produced less lactate but high acetoin as a result of gene deletion. Deletion of dar gene decreased the production of acetoin. The dar deficient strains have low diacetyl reductase activity and are able to reduce significant amounts of acetoin but not terminate it completely. Genetic modification made the shift from homolactic to mixed acid fermentation, but the desired compound production hardly improved. The basis of these results and techniques are promising for the further studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call