Abstract

The distinct disease progression patterns of severe acute respiratory syndrome coronavirus clade 2 (SARS-CoV-2) indicate diverse host immune responses. SARS-CoV-2 severely impairs type I interferon (IFN) cell signaling, resulting in uncontrolled late-phase lung damage in patients. For better pharmacological properties, cytokine modifications may sometimes result in a loss of biological activity against the virus. Here, we employed the genetic code expansionand engineered IFN-β, a phase II clinical cytokine with 3-amino tyrosine (IFN-β-A) that reactivates STAT2 expression in virus-infected human cells through JAK/STAT cell signaling without affecting signal activation and serum half-life. This study identified that genetically encoded IFN-β-A might stabilize the protein-receptor complex and trigger JAK-STAT cell signaling, which is a promising modality for controlling SARS-CoV-2 infection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call