Abstract

Cancer cells accumulate genetic mutations in coding proteins that may be presented by HLA as neoantigenic peptides (peptide HLA, pHLA). T cells scan for neoantigenic pHLA by the T-cell receptor (TCR):CD3 complex. This complex has the dual function of binding pHLA, by the TCR, and triggering T-cell activation by CD3. Checkpoint therapy activates exhausted T cells to kill cancer cells and generally work best against tumors with high neoantigen burden and in patients with neoantigenic-reactive T cells. TCR T-cell engagers (TCE) are a novel class of immunotherapy that bypasses these two requirements by redirecting polyclonal T cells, regardless of their native specificity, to kill a cancer cell independent of neoantigen burden. This is accomplished through deconstructing the membrane-bound TCR:CD3 complex into a soluble bispecific protein comprised of a targeting domain (TCR) and activating domain (usually anti-CD3 single-chain variable fragment). The pool of targets for TCR TCE is larger than for antibody therapeutics and includes >90% of human intra- or extracellular proteins. Most tumor-associated antigens for solid tumors are intracellular and accessible only by a TCR therapeutic. Tebentafusp, a TCR TCE directed to a peptide derived from the gp100 melanoma protein presented by HLA*A02:01, demonstrated a survival benefit in metastatic uveal melanoma (mUM). This survival benefit highlights the promise of TCR TCEs because mUM is a solid tumor with a very low neoantigen burden and has poor response to checkpoints and chemotherapy. Other TCR TCE programs are now in clinical studies for a broader range of tumors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call