Abstract

The focus of this study is the development of a robust and accurate algorithm for model reduction of chemical kinetics for near wall reacting flows. The so-called Reaction-Diffusion Manifold (REDIM) method is employed for this purpose. The problem statement represents a fundamental difficulty for manifolds based model reduction concepts, since it is necessary to account for flame-wall interactions that perturb the system states by heat loss and catalytic reactions. Omitting the latter still leaves the task to find a reduced description, that is valid not only for flames experiencing heat loss in a stationary burning regime, but also in a transient regime, where flame quenching occurs. It is shown that the REDIM method is capable to account for these processes. The application of the approach is illustrated by the methane/air combustion system in a simple geometry with a cold inert wall, but with a detailed chemical reaction mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.