Abstract

Dynamical simulations of ultrafast electron transfer reactions are of utmost interest. To allow for energy dissipation directly into an external surrounding environment, a solvent coupling model has been deduced, implemented, and utilized to describe the photoinduced electron transfer dynamics within a model triad system herein. The model is based on Redfield theory, and the environment is represented by harmonic oscillators filled with bosonic quanta. To imitate real solvents, the oscillators have been equipped with frequencies and polarization lifetimes characteristic of the corresponding solvent. The population was found to transfer through the energetically lowest electron transfer route regardless of the medium. The condensed population transfer dynamics were observed to be highly dependent on the solvent parameters. In particular, an increase in the solvent coupling entailed a detainment in the population transfer from the initially prepared diabatic state and a promotion in the population transfer through the other electron transfer route. Two explanations based on the diagonal and off-diagonal matrix elements of the Kohn-Sham Fock matrix, respectively, have been provided. The lifetime of the populated partially charge-separated state was prolonged with increasing solvent polarity, and it was explained in terms of attractive interactions between the solvent's dipole moments and the fragments' charges. The high-frequency vibrational fine-structure in the correlation function was demonstrated to be important for the transfer dynamics, and the importance of dephasing effects in polar solvents was verified and precised to concern the optical polarization of the solvents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call