Abstract

BackgroundWithin the African monitor lizard family Varanidae, two haemogregarine genera have been reported. These comprise five species of Hepatozoon Miller, 1908 and a species of Haemogregarina Danilewsky, 1885. Even though other haemogregarine genera such as Hemolivia Petit, Landau, Baccam & Lainson, 1990 and Karyolysus Labbé, 1894 have been reported parasitising other lizard families, these have not been found infecting the Varanidae. The genus Karyolysus has to date been formally described and named only from lizards of the family Lacertidae and to the authors’ knowledge, this includes only nine species. Molecular characterisation using fragments of the 18S gene has only recently been completed for but two of these species. To date, three Hepatozoon species are known from southern African varanids, one of these Hepatozoon paradoxa (Dias, 1954) shares morphological characteristics alike to species of the family Karyolysidae. Thus, this study aimed to morphologically redescribe and characterise H. paradoxa molecularly, so as to determine its taxonomic placement.MethodsSpecimens of Varanus albigularis albigularis Daudin, 1802 (Rock monitor) and Varanus niloticus (Linnaeus in Hasselquist, 1762) (Nile monitor) were collected from the Ndumo Game Reserve, South Africa. Upon capture animals were examined for haematophagous arthropods. Blood was collected, thin blood smears prepared, stained with Giemsa, screened and micrographs of parasites captured. Haemogregarine morphometric data were compared with the data for named haemogregarines of African varanids. Primer set HepF300 and HepR900 was employed to target a fragment of the 18S rRNA gene and resulting sequences compared with other known haemogregarine sequences selected from the GenBank database.ResultsHepatozoon paradoxa was identified infecting two out of eight (25 %) V. a. albigularis and a single (100 %) V. niloticus examined. Phylogenetic analyses revealed that H. paradoxa clustered with the ‘Karyolysus’ clade, and not with those of reptilian Hepatozoon spp.ConclusionsIn addition to this being the first morphological and molecular characterisation of a haemogregarine within the African Varanidae, it is the first report of a species of Karyolysus infecting the monitor lizard family. Furthermore, this constitutes now only the third described and named Karyolysus species for which there is a nucleotide sequence available.

Highlights

  • Within the African monitor lizard family Varanidae, two haemogregarine genera have been reported

  • Varanus spp. collection and blood preparation Specimens of Varanus albigularis albigularis and Varanus niloticus were collected in daylight during the summer months of November 2013, February and November 2014, and February 2015 in the Ndumo Game Reserve (NGR) (26°52′00.0′′S, 32°15′00.0′′E), north-eastern KwaZulu-Natal (KZN), South Africa, bordering southern Mozambique [10]

  • The two juveniles were found to be negative for blood parasites, whilst 4/6 (67 %) adult V. a. albigularis and 1/1 (100 %) adult V. niloticus were found positive for haemogregarine infections

Read more

Summary

Introduction

Within the African monitor lizard family Varanidae, two haemogregarine genera have been reported. Even though other haemogregarine genera such as Hemolivia Petit, Landau, Baccam & Lainson, 1990 and Karyolysus Labbé, 1894 have been reported parasitising other lizard families, these have not been found infecting the Varanidae. Karyolysus, is known mainly as a saurian haemogregarine genus that primarily parasitises lizards of the family Lacertidae, but has been reported from lizards of the Scincidae [1, 5,6,7]. Besides this discrepancy in vertebrate host preference of the species in the above haemogregarine genera, species in these genera demonstrate different developmental patterns. Even though species of all three of the haemogregarine genera may be transmitted to the saurian host through the ingestion of the infected invertebrate vector, Hepatozoon spp. may be transmitted through a wide range of arthropod vectors (mosquitoes to ticks), whilst transmission of Hemolivia spp. and Karyolysus spp. has been recorded only through a tick and mite vector, respectively [1]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call