Abstract

In this study, local redeposition characteristics of hydrocarbon molecules from the ethane family are investigated using Monte Carlo simulation. Information about redeposition characteristics is required to estimate tritium retention via redeposition with chemically eroded hydrocarbon molecules. For the condition of multiple reflections at divertor surface and a plasma density of 1.0 ×10 19 m −3 , the local redeposition characteristics for injection of ethane family (C2H2 ,C 2H4 ,C 2H6) have been investigated for plasma temperatures ranging from 1 to 100eV. The number of redeposited hydrocarbon molecules increases with plasma temperature because of the increase in impinging particle energy. The increase in sheath potential results in the increase in particle energy. For plasma temperatures lower than 5eV, there is a sudden increase in the number of redeposited particles with plasma temperature because of the increase in the number of impinging molecular ions. Sheath field acceleration is the main mechanism that causes the ions to move to the divertor plate, and the exponential increase in the number of redeposited particles results from the increase in hydrocarbon break-up products in the sheath potential region.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call