Abstract

The viscosity that ensures the controlled diffusion of biomolecules in cells is a crucial biophysical parameter. Consequently, fluorescent probes capable of reporting viscosity variations are valuable tools in bioimaging. In this field, red-shifted probes are essential, as the widely used and gold standard probe remains green-emitting molecular rotors based on BODIPY. Here, we demonstrate that pyrrolyl squaraines, red-emissive fluorophores, exhibit high sensitivity over a wide viscosity range from 30 to 4890 mPa·s. Upon alkylation of the pyrrole moieties, the probes improve their sensitivity to viscosity through an enhanced twisted intramolecular charge transfer phenomenon. We utilized this scaffold to develop a plasma membrane probe, pSQ-PM, that efficiently stains the plasma membrane in a fluorogenic manner. Using fluorescence lifetime imaging, pSQ-PM enabled efficient sensing of viscosity variations in the plasma membrane under various conditions and in different cell lines (HeLa, U2OS, and NIH/3T3). Moreover, upon incubation, pSQ-PM stained the membrane of intracellular vesicles and suggested that the lysosomal membranes displayed enhanced fluidity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.