Abstract

The equilibrium isotope fractionation factor αeq is a fundamental parameter in the study of stable isotope effects. Experimentally, it has been difficult to establish that a system has attained equilibrium. The three-isotope method, using the initial trajectory of changing isotope ratios (e.g. 16O, 17O, and 18O) to deduce the final equilibrium point of isotope exchange, has long been hailed as the most rigorous experimental approach. However, over the years some researchers have cautioned on the limitations of this method, but the foundation of three-isotope method has not been properly examined and the method is still widely used in calibrating αeq for both traditional and increasingly non-traditional isotope systems today. Here, using water-water and dissolved CO2-water oxygen exchange as model systems, we conduct an isotopologues-specific kinetic analysis of the exchange processes and explore the underlying assumptions and validity of the three-isotope method. We demonstrate that without knowing the detailed exchange kinetics a priori the three-isotope method cannot lead to a reliable αeq. For a two-reservoir exchanging system, α determined by this method may be αeq, kinetic isotope effect, or apparent kinetic isotope effect, which can all bear different values. When multiple reservoirs exist during exchange, the evolving trajectory can be complex and hard to predict. Instead of being a tool for αeq determination, three-isotope method should be used as a tool for studying kinetic isotope effect, apparent kinetic isotope effect, and detailed exchange kinetics in diverse systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call