Abstract

As a hub for plant metabolism, plastids extensively exchange metabolites with the extraplastid environment. For polar metabolites, membrane transporters mediate this exchange, but for many plastid-synthesized nonpolar compounds, such transporters remain elusive. Here, we discuss recent data from transorganellar complementation studies that demonstrate that enzymes in one organelle can directly access nonpolar metabolites from a companion organelle. We propose that a mechanism, based on hemifused-membranes at plastid-endoplasmic reticulum (ER) contact sites, facilitates interorganellar interactions and allows enzymes direct, transporter-independent access to a range of nonpolar compounds in both organelle membranes. In a wider context, interorganellar metabolism at hemifusion interfaces would allow evolution of membrane-spanning pathways for the many thousands of nonpolar metabolites in the plant kingdom to be uncoupled from coevolution with nonpolar metabolite transporters.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call