Abstract

The micro-oxygenation (MOX) of aged wine in contact with pieces of wood is a technique widely used for aging wines as an alternative to barrels. The available range of passive MOX systems is very wide and offers a behavior closer to that of barrels because it uses materials with a similar permeability to oxygen. The aim of this work has been to age the same red wine for 6 months using the main passive MOX systems and compare them with the classic MOX in stainless steel tanks and with barrels as a reference, in order to evaluate phenolic composition and establish its influence. The quantity and the way in which oxygen is incorporated into wine have been found to determine its evolution and final properties. Wine from barrels could be distinguished throughout the aging period since a better level of individualized anthocyanins was maintained, whereas stainless steel + MOX and PMDS (polydimethylsiloxane) wines presented more bluish hues.

Highlights

  • IntroductionTogether with adding wood has been well-known for over 20 years

  • Red wines have been aged traditionally in oak barrels, micro-oxygenation (MOX)together with adding wood has been well-known for over 20 years

  • MOX, the accumulated oxygen dosage responds to the doses injected into the wine Figure shows the evolution of total oxygen dosed wine0.025 in each of the MOX

Read more

Summary

Introduction

Together with adding wood has been well-known for over 20 years This technique is used in many wineries all over the world as they represent a good alternative, producing wines comparable to those aged in barrels but in less time and at a lower cost [1,2]. In the last few years, MOX systems adding oxygen to wine in a similar way to barrels have appeared. These systems can be classified in two large groups, active MOX or passive MOX [2,3]. The former inject the wine with oxygen at a controlled pressure thanks to a single porous ceramic [4]. This is usually done in stainless steel tanks where the wine is matured in contact with wood and small doses of oxygen are added by volume (mL/L)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.