Abstract
Nonminimum carbonic acid clusters provide excitation energies and oscillator strengths in line with observed ice-phase UV absorptions better than traditional optimized minima. This equation-of-motion coupled cluster quantum chemical analysis on carbonic acid monomers and dimers shows that shifts to the dihedral angle for the internal heavy atoms in the monomer produce UV electronic excitations close to 200 nm with oscillator strengths that would produce observable features. This τ(OCOO) dihedral is actually a relatively floppy motion unlike what is often expected for sp2 carbons and can be distorted by 30° away from equilibrium for an energy cost of only 11 kcal/mol. As this dihedral decreases beyond 30°, the excitation energies decrease further. The oscillator strengths do, as well, but only to a point. Hence, the lower-energy distortions of τ(OCOO) are sufficient to produce structures that exhibit excitation energies and oscillator strengths that would red-shift observed spectra of carbonic acid ices away from the highest UV absorption feature at 139 nm. Such data imply that colder temperatures (20 K) in the experimental treatment of carbonic acid ices are freezing these structures out after annealing, whereas the warmer temperature experiments (80 K) are not.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.