Abstract

In indigo, excited state proton transfer (ESPT) is known to be associated with the molecular mechanism responsible for highly efficient radiationless deactivation. When this route is blocked (partially or totally), new deactivation routes become available. Using new green chemistry procedures, with favorable green chemistry metrics, monosubstitution and disubstitution of N group(s) in indigo, by tert-butoxy carbonyl groups, N-(tert-butoxycarbonyl)indigo (NtBOCInd) and N,N'-(tert-butoxycarbonyl)indigo (N,N'tBOCInd), respectively, were synthetically accomplished. The compounds display red to purple colors depending on the solvent and substitution. Different excited-state deactivation pathways were observed and found to be structure- and solvent-dependent. Trans-cis photoisomerization was found to be absent with NtBOCInd and present with N,N'tBOCInd in nonpolar solvents. Time-resolved fluorescence experiments revealed single-exponential decays for the two compounds which, linked to time-dependent density functional theory (TDDFT) studies, show that with NtBOCInd ESPT is extremely fast and barrierless-predicted to be 1 kJ mol-1 in methylcyclohexane and 5 kJ mol-1 in dimethylsulfoxide-, which contrasts with ∼11 kJ mol-1 experimentally obtained for indigo. An alternative ESPT, competitive with the N-H···O═C intramolecular pathway, involving dimer units is also probed by TDDFT and found to be consistent with the experimentally observed time-resolved data. N,N'tBOCInd, where ESPT is precluded, shows solvent-dependent trans-cis/cis-trans photoisomerization and is surprisingly found to be more stable in the nonemissive cis conformation, whose deactivation to S0 is found to be solvent-dependent.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.