Abstract
The monitoring of alkaline phosphatase (ALP) activity in different tissues is significant for disease diagnosis and therapy. However, the time-resolved in vivo sensing of ALP activity remained unresolved. Herein, a novel red-near-infrared fluorescent ALP probe (Cl2-BDCM-ALP) based on a dichloro-substituted dicyanomethylene-4H-chromene derivative was designed and synthesized with high fluorescence efficiency and stability under biological pH range. By using Cl2-BDCM-ALP, ALP activity under an acidic microenvironment such as a tumor site can be sensitively imaged, which cannot be achieved by some previously reported ALP probes. By further loading the Cl2-BDCM-ALP into a near-infrared (NIR) light-responsive nanocontainer, time-resolved long-term imaging of ALP activity was facilely achieved with noninvasive NIR light remote control. Time-resolved variation of ALP activity of the drug-induced acute liver injury mice was successfully monitored in vivo for the first time. This strategy holds great promise in the in situ ALP detection under a broad pH range with temporal resolution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.