Abstract

The use of commercially sourced dopants for synthesizing biochar-based composites could be economically undesirable. The current work aimed to explore the possibility of making low-cost biochar-based composites using red mud (an industrial waste from alumina production) as dopants. Two types of red mud were used: one from a Bayer process and another from a sintering process. Different techniques (wet chemical, magnetic, SEM-EDS, FTIR, XPS and XRD analyses) were adopted to characterize the synthesized red mud-biochar composites, along with the pristine biochar. The composites were superior to the pristine biochar in terms of acid neutralizing capacity, specific surface area, and degree of magnetization. Two laboratory simulation experiments were conducted to assess the improved efficacy of the composites on the treatment of acidic mine water and mine water-contaminated soils. In general, application of the composites resulted in a significantly higher removal rate of mine water-borne trace elements compared to the pristine biochar treatment. The composites also had better effects on immobilizing the soil-borne trace elements and weakening the uptake of trace elements by the test vegetable plant species grown in the composite-treated soils, as compared to the pristine biochar-treated soil. By comparison, the sintering red mud-biochar composite had a generally better performance compared to the Bayer red mud-biochar composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call