Abstract

In this study, a novel peroxymonosulfate (PMS) activation method, which combines a solid waste (i.e., red mud, RM) and a reducing agent (i.e., hydroxylamine, HA), for the oxidative degradation of fluoroquinolones (FQs; i.e., flumequine (FLU) and ciprofloxacin (CIP)) in hospital wastewater (HW) was developed. The addition of HA into the PMS/RM suspension significantly enhanced FLU removal, owing to its ability to enhance the Fe(III)/Fe(II) cycle on the RM surface. The results of the quenching experiments suggested the predominance of SO4•− over •OH in the PMS/RM/HA system. Moreover, owing to the greater reactivity between CIP and SO4•−, CIP removal was more effective than FLU removal. Additionally, the liquid chromatography-mass spectroscopy (LC-MS) analysis revealed that the oxidation of CIP and FLU by PMS/RM/HA occurred via sequential and separate processes, involving ring cleavage, hydroxylation, decarbonylation, and defluorination. Surprisingly, the wastewater components exhibited contrasting effects on FLU removal in HW. Natural organic matter, nitrate and sulfate showed a slight impact on the removal performance of FLU, whereas chloride improved the oxidation extent. However, phosphate significantly inhibited the FLU removal because of its competitive binding at the RM surface and its scavenging effect towards SO4•−. This inhibitory effect was overcome by increasing the PMS concentration and its sequential addition, thus guaranteeing successful mineralization of FLU in HW. These results show that the RM/HA system can be utilized to activate PMS for the removal of antibiotics in wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.