Abstract

Ectotherms usually require a narrow range of thermal conditions for development; thus, parental selection of oviposition sites is crucial. In a field experiment, we investigated female solitary red mason bee (Osmia bicornis) preferences for potential nest site temperatures and their effects on offspring development. The results showed that bees detected and avoided nest sites with high temperatures (28°C) and often chose cooler (24°C) or ambient temperatures (average 18–20°C). This is a protective behaviour because offspring survival decreases with increasing nest temperature, mostly due to mortality at the egg stage. Elevated temperatures also led to weight loss in adult bees. However, hot nest temperatures appeared to deter adults or kill parasite larvae, as the highest numbers of parasites were observed in unheated nests. We concluded that choosing the proper temperature for nests is an important element in bee life strategies, especially in warming environments.

Highlights

  • Many species of animals provide direct care to their offspring during development to increase their survival rate (Clutton-Brock 1991)

  • In the nest boxes kept at a minimum temperature (MT) of 24°C, the mean temperature was relatively high (26.0 ± 2.5°C; mean ± SD) but not as high as that in the hottest nest boxes (29.9 ± 3.5°C; mean ± SD)

  • Ectotherms, which usually require a specific range of thermal conditions, usually choose nest sites that will maximize progeny development (Roces and Núñez 1989; Trumbo 1996; Thomas 2002; Pike et al 2012)

Read more

Summary

Introduction

Many species of animals provide direct care to their offspring during development to increase their survival rate (Clutton-Brock 1991). Choosing the right nest site by parents is one of the most important factors impacting offspring survival (Trumbo 1996; Refsnider and Janzen 2010). Parental selection of an oviposition site is crucial, especially for ectotherms whose body temperature depends on the ambient temperature (AT) and who develop successfully under a narrow range of microhabitat conditions. These types of animals, which often live in environments with fluctuating temperatures (daily and seasonal), should be equipped with behavioural or/and physiological mechanisms necessary to recognize and avoid. While warming could benefit high-latitude insects by increasing the opportunities for oviposition and foraging, it may simultaneously be nullified by indirect costs of increased parasite activity (Thomas and Blanford 2003; Forrest and Chisholm 2017)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call