Abstract

Aspects of the red thermoluminescence (RTL) and IR (833±5 nm) stimulated red ( λ emission=600– 750 nm ) luminescence (orange-red IRSL) of potassium feldspar from different origins are described. Anomalous fading of RTL (300–500°C) from a selection of potassium feldspar samples was tested. High temperature RTL (300–450°C) exhibits less anomalous fading in comparison to UV luminescence, for the samples under study. The result supports the contention of Zink and Visocekas (1997) that the red TL emission from feldspar does not fade. It was found that RTL is bleachable due to IR exposure, and the relationship between RTL lost and orange-red IRSL produced is linear. It is shown that around one third of the trapped charge responsible for the orange-red IRSL signal gives rise to an RTL signal, indicating that some traps and luminescence centres are shared for RTL and orange-red IRSL. Specific characteristics of orange-red IRSL from feldspar were identified. It was found that the orange-red IRSL decay curve is bleachable by IR and daylight and can be described by the sum of three exponential components. Orange-red IRSL fading was tested. Short-term storage tests (up to 2 weeks) showed no fading. Longer-term (ca. months) storage of orange-red IRSL do in fact indicate fading, though at levels considerably lower than for the UV emission. The contradictory result is possibly due to the detection wavelength. As such, it is highly likely that the long-term fading experiment is strongly influenced by the feldspar emission centred at ca. 570 nm , which exhibits anomalous fading, while the short-term fading experiment is more greatly influenced by the far red emission centred at ca. 710 nm that in comparison to UV emission shows no or less fading.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call