Abstract

A novel red light-driven photoelectrochemical (PEC) biosensing platform based on hypotoxic ternary mercaptopropionic acid (MPA)-capped AgInS2 nanoparticles (NPs) with excellent hydrophily and biocompatibility was proposed. AgInS2 NPs as a PEC sensing substrate exhibited high photon-to-current conversion efficiency under red light excitation, generating an intensive photocurrent for enhancing the sensitivity of PEC determination. After the introduction of the amino-terminated sgc8c aptamer onto the interface of AgInS2 NPs, the overexpressed protein tyrosine kinase-7 on the surface of lymphoblast CCRF-CEM cells could be efficiently captured. Using CCRF-CEM cell as a model analyte, an ultrasensitive PEC biosensor for scatheless assay of cells at the applied potential of 0.15 V under a red light excitation of 630 nm was designed based on the significant decline of photocurrent intensity after capturing CCRF-CEM cells. The developed PEC cytosensor demonstrated an excellent cell-capture ability, as well as a wide linear range from 1.5 × 102 to 3.0 × 105 cells/mL and a low detection limit of 16 cells/mL for CCRF-CEM cells. In addition, the resulting assay method verified high selectivity and negligible cytotoxicity for cells assay. This work provided an alternative method for scatheless assay of tumor cells, which would have promising prospect in clinical diagnoses of cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.