Abstract

Red lesion identification at its early stage is very essential for the treatment of diabetic retinopathy to prevent loss of vision. This work proposes a red lesion detection algorithm that uses Hexagonal pattern-based features with two-level segmentation that can detect hemorrhage and microaneurysms in the fundus image. The proposed scheme initially pre-processes the fundus image followed by a two-level segmentation. The level 1 segmentation eliminates the background whereas the level 2 segmentation eliminates the blood vessels that introduce more false positives. A hexagonal pattern-based feature is extracted from the red lesion candidates which can highly differentiate the lesion from non-lesion regions. The hexagonal pattern features are then trained using the recurrent neural network and are classified to eliminate the false negatives. For the evaluation of the proposed red lesion algorithm, the datasets namely ROC challenge, e-ophtha, DiaretDB1, and Messidor are used with the metrics such as Accuracy, Recall, Precision, F1 score, Specificity, and AUC. The scheme provides an average Accuracy, Recall (Sensitivity), Precision, F1 score, Specificity, and AUC of 95.48%, 84.54%, 97.3%, 90.47%, 86.81% and 93.43% respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.