Abstract

BackgroundWe previously discovered that Korean red ginseng aqueous extract (RGAE) potentiates the TMEM16A channel, improved mucociliary transport (MCT) parameters in CF nasal epithelia in vitro, and thus could serve as a therapeutic strategy to rescue the MCT defect in cystic fibrosis (CF) airways. The hypothesis of this study is that RGAE can improve epithelial Cl− secretion, MCT, and histopathology in an in-vivo CF rat model. MethodsSeventeen 4-month old CFTR–/– rats were randomly assigned to receive daily oral control (saline, n = 9) or RGAE (Ginsenosides 0.4mg/kg/daily, n = 8) for 4 weeks. Outcomes included nasal Cl− secretion measured with the nasal potential difference (NPD), functional microanatomy of the trachea using micro-optical coherence tomography, histopathology, and immunohistochemical staining for TMEM16a. ResultsRGAE-treated CF rats had greater mean NPD polarization with UTP (control = -5.48 +/- 2.87 mV, RGAE = -9.49 +/- 2.99 mV, p < 0.05), indicating, at least in part, potentiation of UTP-mediated Cl− secretion through TMEM16A. All measured tracheal MCT parameters (airway surface liquid, periciliary liquid, ciliary beat frequency, MCT) were significantly increased in RGAE-treated CF rats with MCT exhibiting a 3-fold increase (control, 0.45+/-0.31 vs. RGAE, 1.45+/-0.66 mm/min, p < 0.01). Maxillary mucosa histopathology was markedly improved in RGAE-treated cohort (reduced intracellular mucus, goblet cells with no distention, and shorter epithelial height). TMEM16A expression was similar between groups. ConclusionRGAE improves TMEM16A-mediated transepithelial Cl− secretion, functional microanatomy, and histopathology in CF rats. Therapeutic strategies utilizing TMEM16A potentiators to treat CF airway disease are appropriate and provide a new avenue for mutation-independent therapies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call