Abstract

In the field of modern nanomedicine, ZnO nanoparticles were considered as an emerging candidate for drug delivery because of their inherent biocompatibility and stability. However, the poor dispersibility in a physiological medium obstructed their clinic applications. In this paper, the red fluorescence ZnO nanoparticles were synthesized, using a facile chemical method of polyol in boiling trimethylene glycol (TREG) with zinc acetate. The as-synthesized ZnO nanoparticles were first time grafted with PG layer through ring-opening polymerization of glycidol (ZnO-PG). As calculated from the TGA data, the weight ratio of the grafted PG was about 68 wt%. Then, the ZnO-PG engineered to conjugate with arginine-glycine-aspartate (RGD) peptide by stepwise organic reactions. Finally, anticancer drugs Doxorubicin hydrochloride (DOX) was immobilized on ZnO-PG-RGD (approximately 21.8 ± 0.9 nm) to form ZnO-PG-RGD/DOX. The drug release percentage reaches 70.6% within 48 h under pH 5.2, which was more than 3-fold higher than that pH 7.4. The properties of ZnO nanoparticles and its derivatives were detected by power XRD, TEM, EDS, FTIR, TGA, DLS, Zeta potential and UV. The grafted PG layer not only largely enhanced the dispersibility, but also inhibited ZnO nanoparticles from the uptake by U87MG and Hela cells. In contrast, ZnO-PG-RGD was selectively taken up by U87MG, not Hela cells, demonstrating an obvious targeting property. When ZnO-PG-RGD/DOX was used, U87MG cells showed specificity damaged compared with Hela cells. Thus, functionalized ZnO nanoparticle was a promising nanomaterial in cancer theranostics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.