Abstract

Fluorophores with optimized nonlinear optical properties have become prominent as contrast labels in laser scanning microscopy (LSM). The purpose of this work is to report on a novel benzothiadiazole derivative, namely 4,7-bis(5-((9,9-dioctyl-9H-fluoren-2-yl)ethynyl)thiophen-2-yl)benzo[c][1,2,5]thiadiazole (EFBT) and its optical performance when it is loaded into organic nanostructures intended as labels for LSM. Four different nanostructured labels were prepared: i) EFBT-loaded silica nanoparticles (SiNPs); ii) folate-bioconjugated SiNPs (SiNPs-FA); iii) EFBT-loaded PEGylated nanoparticles (NPs-PEG); and iv) EFBT-loaded folate-terminated PEGylated nanoparticles (NPs-PEG-FA). All these nanostructures are reported through a comparative study of their linear and nonlinear optical properties, including their performance as exogenous label agents in the cervical cancer cell line HeLa. This assessment of the performance of a specific fluorophore loaded into different nanostructured matrices (labels), and fairly compared under the same characterization conditions, including the LSM settings, is less common while previous reports had focused in comparing silica and PEGylated nanoparticles but loaded with different fluorophores. The results show that the internal molecular organization into each type of organic nanostructure impacted differently the properties of EFBT, where the silica matrix tend to preserve the optical performance of the fluorophore by preventing intermolecular interactions; in contrast, PEGylated nanoparticles favored molecular interactions and introduced non-radiative decay channels that degrades drastically the optical performance. Nevertheless, the use of functionalized ends entities produced a better cellular label uptake with PEGylated that with silica nanoparticles. In overall, the NPs-PEG-FA label produced the best HeLa imaging.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.