Abstract
Nature has been considered as an inspiration of several recent meta-heuristic algorithms. This paper firstly studies and mimics the behavior of Scottish red deer in order to develop a new nature-inspired algorithm. The main inspiration of this meta-heuristic algorithm is to originate from an unusual mating behavior of Scottish red deer in a breading season. Similar to other population-based meta-heuristics, the red deer algorithm (RDA) starts with an initial population called red deers (RDs). They are divided into two types: hinds and male RDs. Besides, a harem is a group of female RDs. The general steps of this evolutionary algorithm are considered by the competition of male RDs to get the harem with more hinds via roaring and fighting behaviors. By solving 12 benchmark functions and important engineering as well as multi-objective optimization problems, the superiority of the proposed RDA shows in comparison with other well-known and recent meta-heuristics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.