Abstract
Background:Erythrocytes require an ability to deform and withstand shear stress while negotiating microcirculation. These properties are largely due to their excess surface area per volume and the characteristics of the membrane’s protein. Deficiencies of these proteins are associated with chronic hemolysis.Methods:This was a cross-sectional study aimed at determining the prevalence of red cell membrane protein abnormalities as determined by sodium dodecyl sulphate polyacrilamide gel electrophoresis (SDS-PAGE) among patients with anemia attending the outpatient clinics of the hospital.Results:A total of 823 participants were recruited into the study with a mean age of 34±14 years. There were 410 (49.8%) participants with hematocrit ≥ 36% and 413 with hematocrit ≤ 35.9% of which 192 participants (23.3%) had abnormal red cell indices. Following SDS-PAGE, 21 (10.9%) of the 192 participants had deficient PAGE tracing. Abnormal spectrin band was observed in 17 (81%) of the 21 participants. The hematocrit was significantly lower while the reticulocyte count and red cell distribution width were higher in participants with red cell membrane abnormalities.Conclusion:One in ten patients with mild anemia and abnormal red cell indices in clinical practice may be having hereditary red cell membrane protein defect. Presence of raised reticulocyte count, family history of mild anemia, increased red cell distribution width and red cell morphology may be used to screen for membrane deficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.