Abstract
The elasticity of red cell membrane was determined in a rectangular flow channel under controlled shear flow. The relation between shear stress and cell extension ratio (lambda) has been analyzed with the use of Evans' two-dimensional model. The deformed cell shapes observed experimentally agreed well with the model with lambda up to 1.4. The best correlation was found at lambda = 1.2. The analysis suggests a nonlinear extensional membrane modulus in the low stress range encountered in the flow channel. In terms of an appropriate strain parameter, the elastic modulus is shown to rise toward the level encountered in micropipette aspiration experiments. The implications of the present findings in modeling of cell mechanics and in cell hemolysis are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.