Abstract

Upconversion nanoparticles (UCNPs) have been widely employed for tumor imaging using magnetic resonance imaging (MRI) and upconversion luminescence (UCL) imaging. The short blood clearance time and immunogenicity of UCNPs have limited their further application in vivo. We have designed UCNPs camouflaged with an exterior red blood cell (RBC) membrane coating (RBC-UCNPs) to solve these problems. Moreover, because of some intrinsic disadvantages of MRI and UCL imaging, we investigated the use of pretargeted RBC-UCNPs for positron-emission tomography (PET) imaging to obtain more comprehensive information. Our data showed that RBC-UCNPs retained the immunity feature from the source cells and the superior optical and chemical features from the pristine UCNP cores. The tumor-targeting ability of RBC-UCNPs was enhanced by binding 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[folate(polyethylene glycol)-2000] (DSPE-PEG-FA) molecules onto the cell membranes. PET imaging with short half-life radionuclides to visualize the RBC-UCNPs was successfully realized by a combination of pre-targeting and in vivo click chemistry. Blood chemistry, hematology, and histologic analysis suggested good in vivo biocompatibility of the RBC-UCNPs. Our method provides a new potential biomedical application of biomimetic nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.