Abstract

Significance: Red blood cell (RBC)-mediated vasodilation plays an important role in oxygen delivery. This occurs through hemoglobin actions, at least in significant part, to convert heme-bound nitric oxide (NO) (in tense [T]/deoxygenated-state hemoglobin) into vasodilator S-nitrosothiol (SNO) (in relaxed [R]/oxygenated-state hemoglobin), convey SNO through the bloodstream, and release it into tissues to increase blood flow. The coupling of hemoglobin R/T state allostery, both to NO conversion into SNO and to SNO release (along with oxygen), under hypoxia supports the model of a three-gas respiratory cycle (O2/NO/CO2). Recent Advances: Oxygenation of tissues is dependent on a single, strictly conserved Cys residue in hemoglobin (βCys93). Hemoglobin couples SNO formation/release at βCys93 to O2 binding/release at hemes ("thermodynamic linkage"). Mice bearing βCys93Ala hemoglobin that is unable to generate SNO-βCys93 establish that SNO-hemoglobin is important for R/T allostery-regulated vasodilation by RBCs that couple blood flow to tissue oxygenation. Critical Issues: The model for RBC-mediated vasodilation originally proposed by Stamler et al. in 1996 has been largely validated: SNO-βCys93 forms in vivo, dilates blood vessels, and is hypoxia-regulated, and RBCs actuate vasodilation proportionate to hypoxia. Numerous compensations in βCys93Ala animals to alleviate tissue hypoxia (discussed herein) are predicted to preserve vasodilatory responses of RBCs but impair linkage to R/T transition in hemoglobin. This is borne out by loss of responsivity of mutant RBCs to oxygen, impaired blood flow responses to hypoxia, and tissue ischemia in βCys93-mutant animals. Future Directions: SNO-hemoglobin mediates hypoxic vasodilation in the respiratory cycle. This fundamental physiology promises new insights in vascular diseases and blood disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.