Abstract

Cell-like particles represent a category of synthetic particles designed to emulate the structures or functions of natural cells. Herein, we present the assembly of cell-like poly(ethylene glycol) (PEG) particles with different stiffnesses and shapes via replication of animal cells and investigate the impact of particle stiffness on their biological behaviors. As a proof of concept, we fabricate red blood cell-like and spherical PEG particles with varying cross-linking densities. A systematic exploration of their properties, encompassing morphology, stiffness, deformability, and biodistribution, reveal the vital influence of particle stiffness on in vivo fate, elucidating its role in governing the traversal of capillaries and the dynamic interactions with phagocytic cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.