Abstract

We studied experimentally the mechanical properties of the red blood cell. By attaching beads biochemically on the cell membrane at diametrically opposite positions, the membrane movements can be detected very accurately, and a deformation of the cell can be imposed. A measurement of the mechanical properties at very small amplitudes is obtained by fluctuation analysis, and compared to the stiffness at larger deformations, obtained by stretching the cellsviaoptical traps whilst monitoring the force. The cells are also probed at various conditions of pre-strain. These measurements show clearly a stiffening with strain and with pre-strain, which is strongest at low frequencies of deformation. The cell is measured to be slightly softer from fluctuation analysis, but consistent simply with the fact that the oscillation amplitude in fluctuations is very small. There is no evidence in these experiments of non-thermal sources of membrane motion, although non-thermal noise may be present within experimental error.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.