Abstract

IntroductionMuscle injury is common among athletes and amateur practitioners of sports. Following an injury, the production of reactive oxygen species (ROS) occurs, which can harm healthy muscle fibers (secondary damage) and delay the repair process. Low-level laser therapy (LLLT) administered prior to or following an injury has demonstrated positive and protective effects on muscle repair, but the combination of both administration times together has not been clarified.AimTo evaluate the effect of LLLT (660 nm and 780 nm, 10 J/cm², 40 mW, 3.2 J) prior to injury with or without the administration after injury on oxidative stress during the muscle repair process.MethodsWistar rats were divided into following groups: control; muscle injury alone; LLLT 660 nm + injury; LLLT 780 nm + injury; LLLT 660 nm before and after injury; and LLLT 780 nm before and after injury. The rats were euthanized on days 1, 3 and 7 following cryoinjury of the tibialis anterior (TA) muscle, which was then removed for analysis.ResultsLipid peroxidation decreased in the 660+injury group after one day. Moreover, red and infrared LLLT employed at both administration times induced a decrease in lipid peroxidation after seven days. CAT activity was altered by LLLT in all periods evaluated, with a decrease after one day in the 780+injury+780 group and after seven days in the 780+injury group as well as an increase in the 780+injury and 780+injury+780 groups after three days. Furthermore, increases in GPx and SOD activity were found after seven days in the 780+injury+780 group.ConclusionThe administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process.

Highlights

  • Muscle injury is common among athletes and amateur practitioners of sports

  • Red and infrared level laser therapy (LLLT) employed at both administration times induced a decrease in lipid peroxidation

  • The administration of red and infrared laser therapy at different times positively modulates the activity of antioxidant enzymes and reduces stress markers during the muscle repair process

Read more

Summary

Objectives

The aim of the present study was to investigate the effects of LLLT administered prior to muscle injury with or without administration after injury on oxidative stress

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call