Abstract
Fluorescence imaging and magnetic resonance imaging have been research hotspots for adjuvant therapy and diagnosis. However, traditional fluorescent probes or contrast agents possess insurmountable weaknesses. In this work, we reported the preparation of dual-mode probes based on mesoporous silica nanomaterials (MSNs), which were doped with an aggregation-induced emission (AIE) dye and Gd3+ through a direct sol-gel method. In this system, the obtained materials emitted strong red fluorescence, in which the maximum emission wavelength was located at 669 nm, and could be applied as effective fluorescence probes for fluorescence microscopy imaging. Furthermore, the introduction of Gd3+ made the nanoparticles effective contrast agents when applied in contrast-enhanced magnetic resonance (MR) imaging because they could improve the contrast of MR imaging. The excellent biocompatibility of these nanoparticles, as demonstrated via a typical CCK-8 assay, and their performance in fluorescence cell imaging and MR imaging shows their potential for applications in biomedical imaging.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.