Abstract

This paper explores the mechanisms to efficiently combine annotations of different quality for multiclass classification datasets, as we argue that it is easier to obtain large collections of weak labels as opposed to true labels. Since labels come from different sources, their annotations may have different degrees of reliability (e.g., noisy labels, supersets of labels, complementary labels or annotations performed by domain experts), and we must make sure that the addition of potentially inaccurate labels does not degrade the performance achieved when using only true labels. For this reason, we consider each group of annotations as being weakly supervised and pose the problem as finding the optimal combination of such collections. We propose an efficient algorithm based on expectation-maximization and show its performance in both synthetic and real-world classification tasks in a variety of weak label scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.