Abstract

Renewable energy and electric vehicles are well-acknowledged strategies for reducing CO2 emissions, and their development relies heavily on the core of energy storage systems using lithium-ion batteries. However, recycling of lithium-ion batteries is far from mature, and massive abandonment of spent batteries would lead to severe environmental pollution. Meanwhile, the shortage of lithium resources brought about by the rapid development of lithium-ion batteries, especially LiFePO4, significantly drives up the preparation cost of Li4SiO4 as a promise sorbent and greatly limits its application as a CO2 capture scheme. Hence, a strategy is urgently needed to alleviate the lithium resource contradiction between energy storage and CO2 mitigation. Herein, we report a novel concept in recycling spent LiFePO4 battery to prepare high-efficiency and low-cost Li4SiO4 sorbents for CO2 capture. The obtained Li4SiO4 sorbents demonstrate very stable CO2 capacities of 0.27–0.28 g/g in a typical test up to 80 cycles, a leading level in CO2 capture, while the cost is only 1/6 of the conventional preparation process. It suggests that the concept of recycling spent LiFePO4 for CO2 capture has broad implications on resource utilization of energy waste and the mitigation of CO2 emissions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.