Abstract
ABSTRACTWaste poly(ethylene terephthalate) (PET) textiles were effectively chemical recycling into flame‐retardant rigid polyurethane foams (PUFs). The PET textile wastes were glycolytically depolymerized to bis(2‐hydroxyethyl) terephthalate (BHET) by excess ethylene glycol as depolymerizing agent and zinc acetate dihydrate as catalyst. The PUFs were produced from BHET and polymeric methane diphenyl diisocyanate. The structures of BHET and PUFs were identified by FTIR spectra. The limiting oxygen index (LOI) of the PUFs (≥23.27%) was higher than that of common PUFs (16–18%), because the aromatic substituent in the depolymerized products improved the flame retardance. To improve the LOI of the PUFs, dimethyl methylphosphonate doped PUFs (DMMP‐PUFs) were produced. The LOI of DMMP‐PUFs was approached to 27.69% with the increasing of the doped DMMP. The influences of the flame retardant on the foams density, porosity, and compression properties were studied. Furthermore, the influences of foaming agent, catalyst, and flame retardant on the flame retardation were also investigated. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40857.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.