Abstract

In order to reduce the manufacturing cost of foamed ceramics and expand the application scope of industrial solid waste, in this study, a new type of environment-friendly foamed ceramics was prepared using direct high-temperature foaming with waste silicomanganese slag (SMS) and fly ash (FA) as raw materials and silicon carbide (SiC) as a foaming agent. The influence of SMS content, SiC content, and sintering temperature on the characteristics and microstructure of the specimen were explored. More concretely, the compressive strength, pore morphology, bulk density, and crystalline composition of the foamed ceramics were discussed. The foaming mechanism was also further analyzed. The results showed that including 20% SMS significantly reduced the melt's viscosity and stimulated bubble expansion. This, in turn, facilitated the creation of a porous structure. Moreover, it was noted that samples containing 20% SMS exhibited an anorthite phase when sintered at 1110 °C, resulting in enhanced compressive strength. The bulk density and compressive strength of the foamed ceramics decreased with an increase in the sintering temperature and SiC content. This trend was primarily attributed to the higher total porosity and the insufficient support of the pore wall to the matrix. The best all-around performance was achieved with 20 wt% SMS, 80 wt% FA as raw material, SiC addition of 1.0 wt%, and a sintering temperature of 1100 °C. Under these conditions, the compressive strength, bulk density, and total porosity of the foamed ceramics were 8.09 MPa, 0.57 g/cm3, and 71.04%, respectively. Taken together, the outstanding porous structure and mechanical properties of this foamed ceramic make it suitable for use as insulation or for building partition materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call