Abstract

Plastic waste found in oceans has become a major concern because of its impact on marine organisms and human health. There is significant global interest in recycling these materials, but their reclamation, sorting, cleaning, and reprocessing, along with the degradation that occurs in the natural environment, all make it difficult to achieve high quality recycled resins from ocean plastic waste. To mitigate these limitations, various additives including clay and rubber were explored. In this study, we compounded different types of ocean-bound (o-HDPE and o-PP) and virgin polymers (v-LDPE and v-PS) with various additives including a functionalized clay, styrene-multi-block-copolymer (SMB), and ethylene-propylene-based rubber (EPR). Physical observation showed that all blends containing PS were brittle due to the weak interfaces between the polyolefin regions and the PS domains within the polymer blend matrix. Blends containing clay showed rough surfaces and brittleness because of the non-uniform distribution of clay particles in the polymer matrix. To evaluate the properties and compatibility of the blends, characterizations using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), and small-amplitude oscillatory shear (SAOS) rheology were carried out. The polymer blend (v-LDPE, o-HDPE, o-PP) containing EPR showed improved elasticity. Incorporating additives such as rubber could improve the mechanical properties of polymer blends for recycling purposes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.