Abstract

AbstractPolyethylene (PE) waste often piles up in the environment for up to 30 to 50 years, without complete degradation. This paper describes how PE waste can be used as a reinforcement in laterite bricks for sustainable building materials. The bricks are produced with different volume percentages (0–30 vol. %) of PE. The flexural/compressive strengths and fracture toughness values of the composite blocks are compared with those of mortar (produced from river sand and cement). The composite containing 20 vol. % of PE is shown to have the best combination of flexural/compressive strength and fracture toughness. The flexural/compressive strengths and fracture toughness values increase with increasing volume percentage of PE up to 20 vol. %, before decreasing to minimum values for composites with 30 vol. % of PE. The trends in the measured strengths and fracture toughness values are explained using composite and crack bridging models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call