Abstract

Waste recycling is a solution that reduces the environmental impact of waste landfilling or incineration. The aim of this paper is to investigate both the effect of incorporating recycled fibers obtained by defibrating 50/50 hemp/rPP nonwoven waste and the effect of the compatibilizer on the properties of composite materials. Composites incorporating 50% and 100% recycled fibers were treated with 2.5% and 5% maleated polypropylene (MAPP), respectively, and compared to both the untreated composites and the composite obtained by thermoforming from the nonwovens that generated the waste. The incorporation of 50% and 100% recycled fibers into composites decreased the tensile strength by 17.1–22.6%, the elongation at break by 12.4–20.1%, the flexural strength by 6.6–9%, and flexural modulus by 10.3–37%. The addition of 5% MAPP showed the greatest improvements in mechanical properties of composites containing 100% recycled fibers, as follows: 19.2% increase in tensile strength, 3.8% increase in flexural strength, and 14.8% increase in flexural modulus. Thermal analysis established that at temperatures ranging between 20 °C and 120 °C, the composites were thermally stable. SEM analysis revealed good coverage of the reinforcing fibers, and EDX analysis confirmed the presence of the compatibilizing agent in the structure of the composite material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call