Abstract

The production of lithium-ion battery is around 9100 million sets in 2016 and is believed to further increase consecutively. This fact triggers the generation of spent cathode materials which contain metals of both valuable and hazardous. Their recycling corresponding to life cycle sustainability of lithium-ion battery has attracted significant attention. However, most technologies for recycling waste lithium-ion batteries are dependent on metallurgical based processes where secondary pollution is inevitable. This research demonstrates a process to directly regenerate LiNi1−x−yCoxMnyO2 cathode material by incorporating methods of mechanochemical activation and solid-state sintering, which can restore the layered structure and improve the lithium ion diffusion without introducing extra impurities. By understanding the effects of sintering temperature, the optimal conditions for direct regeneration of cathode materials with obvious improvement on electrochemical performance can be obtained. As a result, this research proves the possibility of direct regeneration of nickel-containing waste cathode materials with minimized chemical consumption.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.