Abstract

Neurons that synthesize nitric oxide from arginine produce stoichiometric amounts of citrulline. We investigated whether nitric oxide-releasing enteric neurons have the capacity to recycle citrulline to arginine and thereby sustain nitrergic neurotransmission. Argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity, enzymes capable of citrulline to arginine conversion, were both localized in discrete populations of myenteric and submucosal neurons in the canine proximal colon. Argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity co-localized with neuronal beta-nicotinamide adenine dinucleotide phosphate diaphorase staining, a marker for nitric oxide synthase. The functional significance of argininosuccinate synthetase-like immunoreactivity and argininosuccinate lyase-like immunoreactivity was shown by testing the effects of exogenous citrulline on responses to enteric inhibitory nerve stimulation, which were assessed by measuring contractions, inhibitory junction potentials and electrical slow waves. As shown previously, arginine analogues (L-nitroarginine methyl ester or L-nitroarginine; 100 microM) inhibited nitric oxide-dependent responses, and excess L-arginine restored inhibitory responses. Citrulline alone (0.1-2 mM) had no effect on nitrergic transmission under control conditions, but in the presence of L-nitroarginine methyl ester or L-nitroarginine, citrulline (0.1-2 mM) restored nitrergic transmission in a concentration-dependent manner. Other neutral amino acids (L-serine, L-leucine) did not mimic the effects of citrulline. Taken together, these data suggest that enteric nitrergic neurons have the enzymatic apparatus and functional capability of recycling citrulline to arginine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.