Abstract

In the context of protecting the ecological environment and carbon neutrality, high-value recycling of flexible polyurethane foam (F-PUF) scraps, generated in the production process, is of great significance to save petroleum raw materials and reduce energy consumption. In the present study, F-PUF scraps were ground into powder by strong shear regrinding using two-roll mill and then reused as a partial replacement of polyol for re-foaming. A series of characterizations were employed to investigate the effect of milling cycles, roller temperatures, and content of the powder on the properties of the powder and F-PUF containing powder. It was revealed that the mechanochemical effect induced breaking of the cross-linking structure and increased activity of the powder. The volume mean diameter (VMD) of powder prepared with 7 milling cycles, at room temperature, is about 97.73 μm. The microstructure and density of the F-PUF containing powder prepared in the above-mentioned manner to replace up to 15 wt.% polyol, is similar to the original F-PUF, with resilience 49.08% and compression set 7.8%, which indicates that the recycling method will play an important role in industrial applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.