Abstract

We introduce nutrient recycling into a model where competitors differ in the scale at which they perceive their environment. In a two-resource system with both external nutrient inputs and recycling, larger consumers ("integrators") often generate resource distributions that favor their smaller ("nonintegrator") competitors, and vice versa. This occurs because recycling of integrator biomass reduces between-patch resource heterogeneity, whereas recycling of nonintegrator biomass does not. Combined, recycling and throughput can allow coexistence when it is not possible with either alone. With recycling, the presence of an integrator also may facilitate higher biomass of a co-occurring nonintegrator. Our model provides a context where recycling can generate negative feedback between competitors that differ in size and so promote coexistence. This is opposite to the positive recycling-mediated feedback commonly expected on the basis of litter chemistry differences between competitors. Effects of recycling and homogenization on nonintegrators may also be negative in our model, depending on the conformation of the system's resource supply points and the species' relative resource requirements. Our model suggests that the effects of plant size on competitive outcomes may depend critically on the degree of resource recycling found in the system and, reciprocally, that the effects of recycling may depend on plant size.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.