Abstract

To ascertain the viability of utilizing lithium slag (LS) in the development of eco-friendly ultra-high performance concrete (UHPC), this paper provides a detailed analysis of the effects of LS on UHPC. Specifically, the hydration and microstructural changes in UHPC containing LS (LS-UHPC) were comprehensively examined. Based on the results of isothermal calorimetry, X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), and mercury intrusion porosimetry (MIP), LS primarily acts as a filler, promotes nucleation, provides internal curing, and participates in the pozzolanic reaction. Significantly, the internal curing effect and the pozzolanic reaction enhanced the strength development of LS-UHPC. UHPC with 20 % LS exhibited the highest 28 d compressive strength at 134.48 MPa and presented the densest microstructure. However, approximately 4 % of the calcium hydroxide in LS-UHPC would not be involved in the pozzolanic reaction. The presence of gypsum in LS led to increased ettringite formation in LS-UHPC. Although LS extended the induction period of UHPC, it intensified the hydration degree of cement. In LS-UHPC, the molar ratio of Ca/Si of C-(A)-S-H decreased, whereas the molar ratio of Al/Si increased, implying that the dissolved aluminum from LS was incorporated into the C–S–H chains. The integration of LS not only considerably reduced the carbon emissions and energy consumption of UHPC but also optimized LS recycling. Overall, the development of a sustainable UHPC by incorporating LS is both practicable and advantageous for environmentally conscious construction practices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call