Abstract

Increase in environmental concern due to improper management of both hazardous and non hazardous wastes released from different industrial process prioritized the necessity for the innovation research. In this context, this paper deals with the immobilization of jarosite waste released from the zinc industry and converting it into a value added product using coal combustion residues (CCRs) through solidification/stabilization (s/s) and sintering process. Experiments were conducted using different ratio of jarosite waste and clay soil with varying concentration of CCRs. The optimized experimental results (using jarosite waste and clay soil ratio of one with 15% CCRs) showed that it is possible to make a composite having desirable mechanical properties such as compressive strength (50–81 kg/cm 2); water absorption (13–17%); shrinkage (11–32%); and density (1.6–1.8 gm cm −3) to use as a construction material. Under solid state sintering process, with the application of CCRs, the mineral phases such as X Fe 3 (SO 4) 2(OH) 6 [where X = K and NH 4], 2Fe 2O 3SO 3 . 5H 2O, PbSO 4, CaSO 4 in jarosite waste were transformed into a silicate matrices. The leachate studies confirmed that the toxic elements such as Cd, Pb, etc. were immobilized in the jarosite waste composite and meeting the USEPA TCLP toxicity norms for safe utility. The composite product thus developed has showed potential for recycling jarosite waste in construction sector leading to cross sector waste recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.