Abstract

REBa2Cu3Oy (RE123 or REBCO, RE = rare earth elements) bulk high-temperature superconductors have a potential perspective for large-scale engineering applications. However, the cost of REBCO bulk production is rather high, considering high failure rates, expensive RE materials, and Pt or Ag addition. Using the cold-seeding in the top-seeded melt growth, a simple and feasible process, we succeeded in recycling the failed REBCO (RE = Y) bulks. The distinctive feature of this recycling process is the use of YBCO-buffered NdBCO films as seeds, which have high thermal stability and can endure a maximum processing temperature (Tmax) up to 1120 °C to enable full decomposition of solid REBCO. Three typical microstructures were recognized in the failed samples attributed to the inherent differences in the non-optimized growth heating profiles. Preferential recycling procedures were chosen according to the difficulty of the failed-samples decomposition, which has a certain connection with the microstructures of the failed bulks. Finally, after oxygenation, the recycled bulks demonstrate good superconducting properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call