Abstract

Krylov subspace recycling is a process for accelerating the convergence of sequences of linear systems. Based on this technique, the recycling BiCG algorithm has been developed recently. Here, we now generalize and extend this recycling theory to BiCGSTAB. Recycling BiCG focuses on efficiently solving sequences of dual linear systems, while the focus here is on efficiently solving sequences of single linear systems (assuming non-symmetric matrices for both recycling BiCG and recycling BiCGSTAB). As compared with other methods for solving sequences of single linear systems with non-symmetric matrices (e.g., recycling variants of GMRES), BiCG based recycling algorithms, like recycling BiCGSTAB, have the advantage that they involve a short-term recurrence, and hence, do not suffer from storage issues and are also cheaper with respect to the orthogonalizations. We modify the BiCGSTAB algorithm to use a recycle space, which is built from left and right approximate invariant subspaces. Using our algorithm for a parametric model order reduction example gives good results. We show about 40% savings in the number of matrix-vector products and about 35% savings in runtime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.